LONG RANGE COUPLINGS IN BENZO(b)SELENOPHEN AND BENZO(b)TELLUROPHEN G. Llabrès^X, M. Baiwir^X, J. Dencel^X, J.L. Piette⁺, L. Christiaens⁺. ^XInstitut de Physique, Université de Liège au Sart Tilman, B - 4000 LIEGE, Belgium. ^IInstitut de Chimie organique, Université de Liège, B - 4000 LIEGE, Belgium.

(Received in UK 18 May 1972; accepted for publication 22 June 1972)

The proton magnetic resonance spectra of monobenzoderivatives of five-membered heterocycles exhibit long range couplings as has been previously shown in indene, indole, benzo(b)furan and benzo(b)thiophen (1).

Inter-ring 3,7- and 3,4-couplings with values of 0.65 Hz and 0.14 Hz respectively have been found in benzo(b)selenophen. In benzo(b)tellurophen, a 0.43 Hz inter-ring 3,7- coupling has been observed. We did not see a 2,6- coupling in either case,

The analysis of the PMR spectrum of benzo(b)selenophen was made as follows. H₂ was identified through its coupling with the ⁷⁷ Se nucleus (47.7 Hz). H₇ was separated from H₄ by the use of a paramagnetic Eu complex as a "chemical shift reagent" (2), the complexed molecule being 2-hydroxymethyl-benzo(b)selenophen. H₅ and H₆ were then identified from their meta couplings.

The interactions of H_3 with two benzene ring protons are clearly visible in the spectrum. The assignment of these counlings was made through the analysis of the 2- and 3-methylbenzo(b) selenophen spectra : in the latter case, the lines of H_7 are considerably sharpened and, to a lesser extent, the same holds for the H_4 lines. The comparison between 2- and 3-methyl derivatives was necessary due to the fact that, in the benzo(b)selenophen spectrum, the H_2 and H_7 lines are superimposed.

The analysis of the benzo(b)tellurophen spectrum was made in a similar way, using the 125 Te coupling (101 Hz) and Eu complex with 2-acetyl-benzo(b)tellurophen.

An inter-ring coupling was found in the H_3 lines (0.43 Hz). Frequency sweep decoupling of H_3 sharpened the broad lines of H_7 and so gave the 3.7 assignment of the observed coupling.

We also point out the coupling of H_2 with ⁷⁷Se : its value, 47.7 Hz, is nearly the same as in the selenophen, 48 Hz (3) and it is much greater than most of the values reported in the literature (4-7). The same holds for the coupling of ¹²⁵Te with H₂, 101 Hz (5-7). This point will be discussed in another paper. The preparation and identification of the compounds studied in this letter has been published separately (8-9).

We wish to thank Prof. H. Brasseur, J. Toussaint and M. Renson for the interest they took in our work.

	2	3	4	5	6	7	J ₂₃	J 37	J 34	J 45	J ₄₆	J ₄₇	J ₅₆	J ₅₇	J ₆₇
Se	7.79	7,42	7,69	7.24	7.14	7,77	5.77	0.65	0,14	7.97	1.02	0.48	7.22	1.17	8.27
Te	8,55	7.84	7.71	7.26	7.03	7.82	6,95	0.43	-	7.97	1.07	0.51	7.24	1.08	8.00

CHEMICAL SHIFTS (ppm-ref. TMS) AND COUPLING CONSTANTS (Hz) (a).

(a) The data are obtained from iterative computations done with UEAITR program (QCPE 188). The details of the fitting procedure will be published elsewhere.

REFERENCES.

1. E.V. Blackburn, J.J. Cholerton, C.J. Timmons : J.Chem.Soc.Perkin II, 101 (1972). and references therein.

2. C.C. Hinckley : J.Am.Chem.Soc., 91, 5160 (1969).

3. M.L. Heffernan, A.A. Humffray : Molec.Phys., 7, 527 (1964).

4. W. McFarlane : J.Chem.Soc., A, 670 (1969).

5. H. Schmidbaur, W. Siebert : Z.Naturforschg., 20b, 596 (1965).

6. W.McFarlane : Molec.Phys., <u>12</u>, 243 (1967).

7. H. Dreeskamp, G. Pfisterer : Molec. Phys., 14, 295 (1968).

8. L. Christiaens, M. Renson : Bull.Soc.Chim.Belges, 77, 153 (1968).

9. J.L. Piette, M. Renson : Bull.Soc.Chim.Belges, 80, 521 (1971).